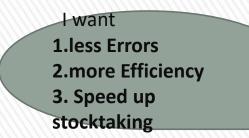


IC1301 -WiPE Wireless Power Transmission for Sustainable Electronics

Object Tracking Using Commercial RFID Technology

Stavroula Siachalou*, Aggelos Bletsas~, John Sahalos and Antonis G. Dimitriou*

*School of ECE, Aristotle University of Thessaloniki, Greece ~School of ECE, Technical University of Crete, Greece School of ECE, University of Nicosia, Cyprus



Motivation: Stock-taking and Human intervention

OCO51

Motivation: Happy Boss Day

...then you should reduce human intervention to _control labor hours and COStS

dreamstime.com

Solution: Efficient Automated RFID Robot Inventory

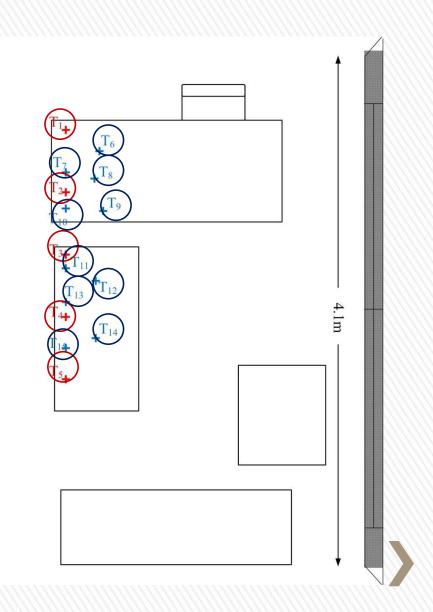
"With the help of a robot, stocktaking can be conducted more often so that data on the availability of goods is always highly up to date."

Advan robot by Keonn technologies (Spain)

Metralabs Tory (Germany)

Contribution

» Object Tracking Using Commercial RFID Technology

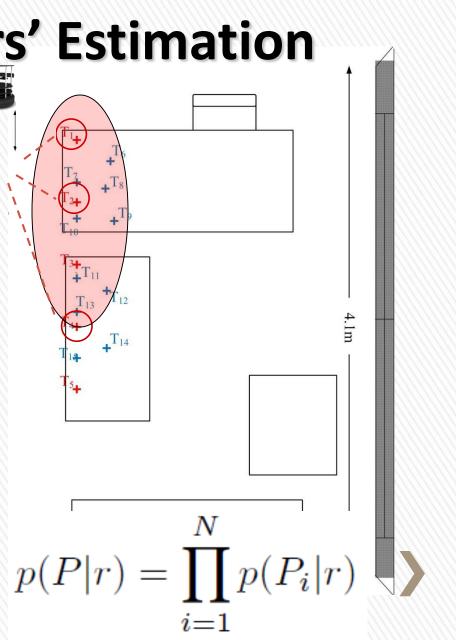

- > Localization of Passive RFID Tags Using a Mobile Cart
- > WHERE IS EVERYTHING

» What do we need?

- > RFID Tags
 - + reference
- > Reader Antenna
- > Mobile robotic platform
- > ...and an efficient localization algorithm
- » How?
 - > We exploit RSSI, Received Signal Strength Information, from reference and target tags

Example

- S reference tags are placed in predefined positions +
- » target tags are placed in the office +
- » a mobile cart starts to move



Example- Readers' Estimation

- » Reader moves across a line
- » N=3 reference tags send their RSSI

P₁=-49dBm, P₂=-51dBm, P₄=-57dBm

- » the set P of received RSSI
 is, P={P1,P2,P4}
- » if p(P|r) the Likelihood conditional probability of the set P, given that the true position of the reader is r then

Example- Readers' Estimation

the probability density function of the received
 RSSI, Pi, given position r

$$p(P_i|r) = \frac{\sqrt{P_i}}{2\sigma_i^2} e^{-\frac{P_i + \mu_i^2}{2\sigma_i^2}} I_0(\frac{\sqrt{P_i}\mu_i}{2\sigma_i^2})$$

$$\mu_i^2 = P_{tagi}\tau(P_{tagi})G_{tagi}(\phi_i, \theta_i)G_{ant}(\phi_i, \theta_i)$$

$$w \text{ ...the entire room is searched to estimate the states the states the states are states and the states are states$$

position r* of the reader

$$r^* = \operatorname*{argmax}_r p(P|r) = \operatorname*{argmax}_r \prod_{i=1}^N p(P_i|r)$$

Example-Location of tags

T₆

T9

 Γ_{12}

T₁₄

In

T11

113

 R_6

 R_7

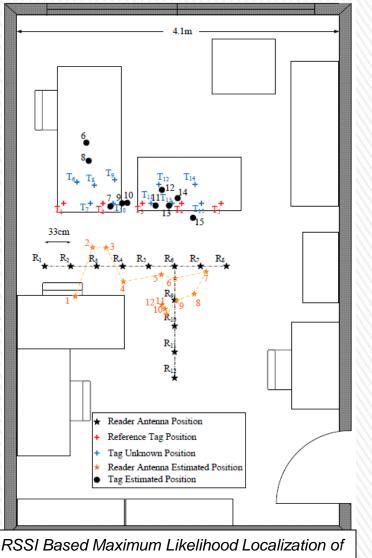
 R_8

 $\boldsymbol{\nu}$

- » ...assume we are searching for tag u=7
- » Consider that this tag has been identified by the reader at *K=6* different locations

» If
$$P_u = (P_u^1, P_u^2, \dots, P_u^K)$$

» then r_u^* is the position of

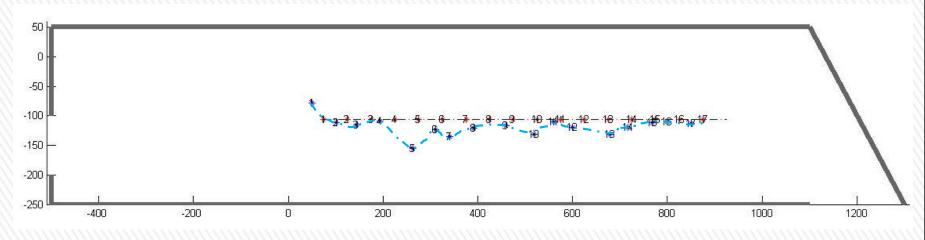

$$r_u^* = \operatorname*{argmax}_r p(P_u|r) = \operatorname*{argmax}_r \prod_{i=1}^{\kappa} p(P_u^i|r)$$

Measurements

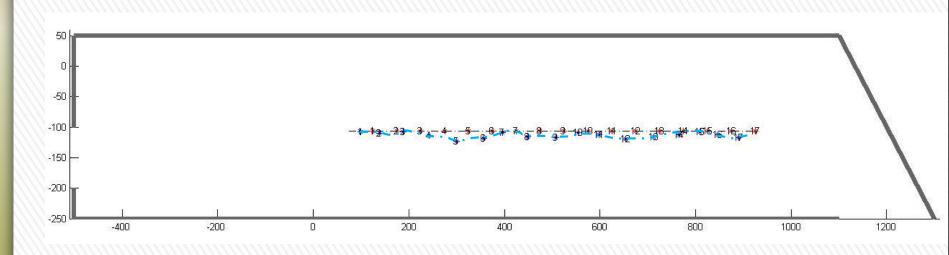
Office Environment

- » Reader trace
 estimation error =
 33.4cm (σ=24cm)
- » Tag error = 25.3cm $(\sigma=12.4cm)$

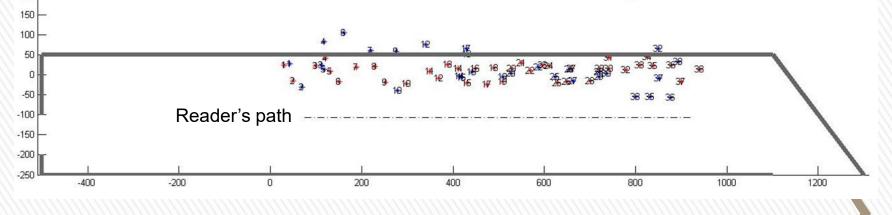
S. Siachalou, A. Bletsas, J. N. Sahalos and A. G. Dimitriou, "*RSSI Based Maximum Likelihood Localization of Passive RFID Tags Using a Mobile Cart*", **IEEE WPTC 2016**, Aveiro, Portugal, May 2016.


Retail-like Environment

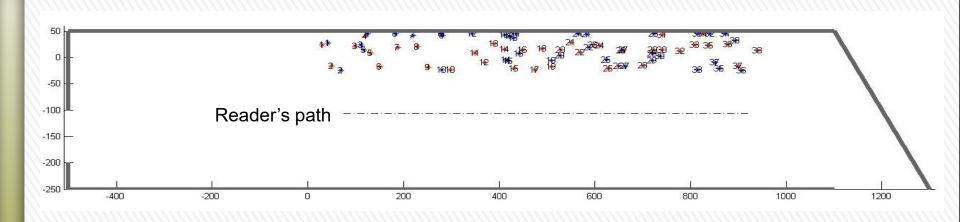
- » 47 reference tags spaced every 20cm
- » 38 "target" tags
- » 2 reader antennas (radiating in different time-slots reader-antenna diversity is investigated)
- » Assume that the map of the area is unknown
- » Only the locations of the reference tags are known.


Reader Trace

- » Mean error: 27.7cm (σ=10.3cm) 35.6cm (σ=13.7cm)
 - + Reference Tag Spacing = 20cm (dense)
- » Source of error: Multipath
 - + Improve: Increase the number of samples


Reader-antenna diversity

» Mean error: 26 cm (σ =7.3cm)


Tags' Localization

- » Mean error: 42.7cm (σ=32.7cm) 43.9cm (σ=31.9cm)
 - + Measurements were collected every 50cm (denser grid is needed)
 - + Some tags backscattered less power than reference tags (due to aging, or detuning from attached objects)
- » Tags were found outside the walls of the area (the map was assumed unknown)

Exploiting Map Information (SLAM in robotics)

» Mean error: **33.4cm** (σ=22.6cm)

Conclusions

- » RSSI localization for passive UHF RFID tags, using only reference tags at known location, seems promising for retail and logistics apps.
- » It can be applied with commercial RFID equipment.
- » Sub-wavelength accuracy can be accomplished by deploying fading-resistant techniques, combined with visual information, typically used in robotics.

IC1301 -WiPE Wireless Power Transmission for Sustainable Electronics

Object Tracking Using Commercial RFID Technology

Stavroula Siachalou*, Aggelos Bletsas~, John Sahalos and Antonis G. Dimitriou*

*School of ECE, Aristotle University of Thessaloniki, Greece ~School of ECE, Technical University of Crete, Greece School of ECE, University of Nicosia, Cyprus

